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The forced vibration of a rotationally periodic structure when subjected to travelling wave
excitation is discussed, with emphasis placed on the steady-state response of doublet modes
having either repeated or split frequencies. Such vibration modes have spatially modulated
shapes de"ned by (1) the number of nodal diameters present in the limiting case of
axisymmetry, and (2) certain additional Fourier harmonics which contaminate and distort
their appearances. The natural frequency and mode structure of a model periodic structure is
discussed in the context of an otherwise axisymmetric disk having evenly spaced,
sector-shaped, line distributions of sti!ness and inertia. Through perturbation analysis, the
contamination wavenumbers present in a doublet having repeated frequency are shown to
comprise two subsets, the members of which have sine and cosine coe$cients of the same, or
of di!ering, signs for each wavenumber in the mode shape's Fourier expansion. The
structure of the wavenumber content is explored further with respect to the response of
repeated and split doublets to a harmonic travelling wave excitation. The individual Fourier
components comprising a modulated doublet can respond and propagate in the same
direction as the excitation, or opposite to it, depending on the wavenumber of the excitation
and the subset to which the contamination wavenumber belongs. The response of the split
frequency doublets and the circumstances under which travelling or standing wave
responses, or a blend of the two, can occur in the structure's reference frame are also
examined in the context of the model periodic structure. The qualitative character of the
response, the forward or backward propagation direction of each mode's constituent
wavenumber components, and the phase speeds of those components are discussed in
illustrative case studies.
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1. INTRODUCTION

Turbine assemblies, fans, pumps, gears, automotive and aircraft braking systems, and the
clamping collars used in computer disk drives are examples of rotationally periodic
structures. This class of system is de"ned by having a regular geometry that is preserved
following rotation of the entire structure through a certain angle. When such features as the
blades in a radial #ow impeller, the cooling "ns in a brake rotor, or the bolts in a clamping
collar are incorporated in an otherwise axisymmetric shell- or disk-like structural model,
the natural frequencies, vibration modes, and response characteristics each shift and
change. The forced response of rotationally periodic structures when they are subjected to
harmonic travelling wave excitation, and in particular, the behavior of their repeated and
split frequency doublet vibration modes, form the subject of this investigation. Such forcing
functions are measured in the structure's frame of reference, with some examples including
the pressure "eld established by upstream stator vanes on a bladed disk assembly, normal
loading of a brake pad on a rotor, and the interaction of a rigid magnetic disk with its
recording head and suspension assembly.
0022-460X/01/160069#15 $35.00/0 ( 2001 Academic Press
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In the absence of periodic features, the vibration modes of an axisymmetric shell- or
disk-like structure are classi"ed as being either doublets (in which case two linearly
independent sine- and cosine-oriented vibration modes of common frequency exist) or as
singlets (where the frequency is instead an isolated root of a characteristic equation, and the
vibration mode itself is axisymmetric). Those two classes of modes are further categorized
according to the numbers m and n of nodal circles and diameters, respectively, where n"0
for all singlets.

As periodic features are incrementally added to the structure, the natural frequencies of
certain doublet modes split into distinct values, but the frequencies of all other doublets
remain repeated. Further, the mode shapes of each doublet class*those repeated and those
split in frequency*become contaminated with by the presence of additional Fourier
harmonics beyond the base wavenumber n. As they superpose on the disk's underlying
nodal diameter pattern, those contamination harmonics can produce a distorted, spatially
modulated appearance [1].

Because of their technological importance and interesting mechanics, a rich literature
exists in the "eld of rotationally periodic systems. Model structures used in examining the
natural frequencies and mode shapes include a ring with point sti!ness supports, distributed
evenly in the circumferential direction, bolted plate and #ange assemblies, and radial or
axial #ow turbine components. The early studies by Thomas [2, 3] were based on "nite
element methods in which substructure-level sti!ness and mass matrices were assembled
and used to describe the composite structure's dynamics. Allaei et al. [4] used the
receptance method to characterize the in-plane mode shapes of a ring having radially
oriented spring attachments. Frequency splitting in periodic, yet almost axisymmetric,
structures has been analyzed with a view towards developing criteria to predict when the
otherwise repeated frequencies of the nodal diameter modes split into di!erent values [5}9].
Ewins and Imregun [10] combined the use of "nite element models and laboratory
measurements to examine frequency shifts and mode shape distortion occurring in packeted
bladed disks. Tomioka et al. [11] similarly examined coupled disk}blade systems through
a Ritz discretization approach.

Primarily modal expansion techniques have been used in treating the forced response
problem. When an axisymmetric structure is subjected to a harmonic travelling wave
excitation, a particular nodal diameter mode is excited, only when the excitation's
wavenumber is commensurate with the mode's number of nodal diameters. Accordingly,
near resonance of a doublet having repeated frequency, an axisymmetric structure responds
in a travelling wave, where the response and excitation have common wavenumbers and
phase speeds. Several analytical and experimental studies [12}15] discuss forward and
backward travelling response waves in that regard. Campbell diagrams, for instance, are
often used to explain resonant conditions in terms of commensurate excitation and natural
frequencies as a function of rotation speed and excitation order [16]. The standing and
travelling wave responses of bladed disk systems have been examined in references [17}20],
among others, in which the dependencies of the response and resonance conditions on the
number of blades, the number of nodal diameters, and the wavenumber of the excitation
were examined.

In what follows, the response of a model periodic structure as it is subjected to a travelling
excitation source is examined through a hybrid perturbation and modal expansion
approach. The structure of the wavenumber content in the repeated and split frequency
doublets is discussed in order to classify the contamination wavenumbers into two subsets
according to the signs taken by the sine and cosine coe$cients in the mode shapes' Fourier
representations. The components comprising the forced response of a repeated frequency
doublet are shown to be able to propagate in the same direction as the excitation, or



Figure 1. Schematic of a rotationally periodic structure comprising an otherwise axisymmetric disk having
NF"5 sector-shaped, evenly distributed, sti!ness and inertia features at common radii r

0
. The structure is

subjected to the travelling wave excitation f which propagates clockwise at speed X.
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opposite to it, depending on whether particular algebraic relationships are satis"ed by the
wavenumbers of the excitation and the contamination component. The circumstances
under which travelling and standing wave response of the split frequency doublets, or
a blend of the two, which can occur in the structure's reference frame are then examined in
the context of a model periodic structure.

2. FREQUENCY AND MODE STRUCTURE

While the present focus lies on the forced response of doublet modes having wavenumber
contamination, certain aspects of the free vibration problem are "rst reviewed and
expanded upon. In particular, a certain relationship exists among the Fourier cosine A

k
and

sine B
k

coe$cients for each harmonic k present in a contaminated doublet, and that
relationship has interesting forced-response implications.

In Figure 1, the thin, clamped}free, annular disk has NF identical, sector-shaped, line
distributions of sti!ness and inertia located at the common radial position r

0
. This structure

is stationary in the inertial reference frame s(0), with origin h"0 aligned along the center of
a feature. The disk is subjected to the travelling wave excitation f, acting normal to the disk's
plane, which appears stationary in the concentric system s(1). Frame s(1) rotates clockwise
relative to s(0) at the dimensionless speed X, de"ned as the ratio of the physical rotation

speed to q~1"JE/(1!v2)oa2, where o is the disk's volumetric mass density, v and E are
its Poisson ratio and modulus, respectively, and a is the outer radius. The governing
equations are formulated in s(0) in dimensionless form, wherein the outer radius is taken as
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the characteristic length, and q is the characteristic time scale. The disk's geometry is
speci"ed by the ratio r

i
"b/a of inner and outer radii.

Free vibration is represented by the more general, symbolic, eigenvalue problem
K;

i
"j

i
M;

i
, in which K and M are dimensionless, positive de"nite, and self-adjoint

sti!ness and mass operators. For the disk vibration problem at hand, the eigenvalue is
de"ned as j

i
"(a/h)2u2

i
, where the dimensionless u

i
is the physical circular natural

frequency scaled to q, and h is the disk's thickness. The index i"1, 2,2, denotes either
a singlet or doublet eigenpair. Expanded to "rst order, the perturbed sti!ness
K"K(0)#eK(1) and mass M"M(0)#eM(1) operators comprise the contributions K(0)

and M(0) associated with the axisymmetric structure, and components K(1) and M(1) which
represent the periodic features. The small dimensionless parameter e@1 scales the loss of
axisymmetry.

For a classical plate, K(0)"+4' and M(0)"I', where +4' is the biharmonic operator in
polar coordinates, I' denotes the identity operator, and the bullet symbol indicates the
operand's location. The sti!ness and inertia distributions are represented as NF-periodic,
piecewise constant, functions in h having the Fourier representation
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where d is the Dirac function, and 0)a)2n/NF is the span angle of each feature. Both
K and M are preserved following the rotation of the entire structure through angle
Dh"2n/NF. The dimensionless constants k

0
and m

0
describe the local intensities of the

sti!ness and inertia features, where k
0

is the ratio of physical sti!ness per unit length to E,
and m

0
is the inertia per unit length scaled by oh2.

Following standard notation, the perturbed eigensolution is denoted as Mj
i
,;

i
N, and the

presumably known solution for the neighboring axisymmetric problem is Mj(0)
i

,;(0)
i

N. The
eigensolution is expressed to "rst order as j

i
+j(0)

i
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i
and ;

i
+;(0)
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#e;(1)

i
. Each

;(1)
i

is further expanded as a linear combination of the orthonormalized eigenfunctions;
mn

of the axisymmetric structure, following reference [21], where the double subscript identi"es
the number of nodal circles and diameters present. Because the;

mn
each comprise only one

harmonic at wavenumber n, their relative amplitudes when superposed to form;(1)
i

provide
the wavenumber content of the contaminated eigenfunction.

2.1. REPEATED DOUBLETS

The "rst-order corrections to the natural frequencies and mode shapes are determined
through expressions involving the unperturbed frequencies and modes, and their
projections onto one another as weighted by K(1) and M(1). For speci"ed n, the natural
frequencies of the two members in the corresponding doublet mode of the perturbed
structure remain repeated whenever 2nOjNF, for j"1, 2,2. Those perturbed eigenvalues
are approximated to "rst order by
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where the subscripts S and C denote the sine and cosine components, and j(0)
s, c

is their
common eigenvalue at e"0. These frequencies increase or decrease with e depending on the
relative magnitudes of k

0
and m

0
.

Each mode shape is perturbed through the introduction of certain other eigenfunctions of
the neighboring problem, which enrich the harmonic content of;

i
. By orienting s(0) so as to

bisect a feature, the perturbed sine (cosine) mode is represented to "rst order as a linear
combination of only the sine-oriented (cosine-oriented) members of other doublets. With
arbitrary initial orientation of s(0), or with features that are not precisely periodic, the
eigenfunctions of a repeated frequency doublet in the neighboring problem must instead be
chosen as particular linear combinations of the sine and cosine members in order to present
a uniform expansion in e. The two elements of a repeated R doublet become
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where the index i has been replaced by notation indicating the numbers of nodal diameters
and circles in ;(0)

i
, and the mode's S or C symmetry. The set K of contamination

wavenumbers is de"ned as those k satisfying the criterion Dn$kD"NF, 2NF, 3NF,2
[1, 10, 11]. The modulated doublets of the periodic P structure having repeated or split
natural frequencies are henceforth denoted as P (m, n) and P (m, n)SC, respectively, while the
singlet modes are labelled P (m, 0). This notation is adopted in order to explicitly distinguish
these modes, which have an underlying pattern of nodal circles and diameters, from their
companions in an axisymmetric structure.

The contamination wavenumbers comprise two integer subsets, namely K"MXP, in
whichM"Mk : Dn!kD"jNFN (minus) and P"Mk : n#k"jNFN (plus), where j"1, 2,2.
For a particular k, the distinction as to whether k3M or k3P has implication for the signs
and magnitudes of the A(R)

k
and B(R)

k
in equations (5) and (6). For each k3M,
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where as for each k3P,
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The radial dependance is expressed by
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where j(0)
s,c

and j(0)
l

are the eigenvalues in the neighboring problem of the n and k nodal
diameter modes. In equations (5) and (6), the coe$cients R

mn
(r) of the components at

wavenumber n are identical. For each k, the coe$cients of the cosine ;(R)
mnc

and sine ;(R)
mns

doublet members depend on the separation between j(0)
c, s

and j(0)
l

, and on the subset M orP.
In particular, the distinction A(R)

k
"B(R)

k
or A(R)

k
"!B(R)

k
in equations (7) and (8) has

implication for the direction in which each response component propagates when the
structure is excited subsequently by a travelling wave. Coe$cients A(R)

k
and B(R)

k
are also

functions of the features' sector angle, and they vanish in the two subsets when
a"2nj/(n$k) ( j"1, 2,2). By proper selection of a, it is possible to reduce contamination



Figure 2. (a) Transverse displacements;(R)
04S

and;(R)
04C

at r"1 of the P(0, 4) doublet, and (b) Fourier coe$cients
R

04
, eA(R)
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, j, at k"1, 6 and 9.
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at any particular wavenumber, or even eliminate it altogether,at least to "rst order. In
equations (7) and (8), when the arguments (n$k)a/2 are su$ciently small, A(R)

k
"B(R)

k
"aC

mnk
NF/2 for k3M, and A(R)

k
"!B(R)

k
"aC

mnk
NF/2 for k3P, so that the degree of

modulation grows with the number of features and sector size.
Figures 2 and 3 depict results for the P (0, 4) and P (0, 6) doublets, which are asymptotic to

the four and six nodal diameter doublets of the axisymmetric disk. In these examples, the
disk's thickness is scaled to be 1% of its outer radius, NF"5, a"n/10, k

0
"m

0
"5,

r
i
"0)5, r

0
"1, and e"0)1. The j(0)

i
are calculated from classical plate theory, and the

unperturbed mode shapes are normalized with respect to M(0). With appropriate values
substituted in equations (7) and (8), the A

k
and B

k
are calculated, and the perturbed mode

shapes (5) and (6) are normalized to unit peak amplitude. The "gures depict circumferential
vairation of the transverse displacement at r"1 for each doublet member, and the
corresponding Fourier content. In Figure 2, for instance, the n"4 coe$cients for S and
C have the same numerical value (0)62) as for the normalized modes of the axisymmetric
disk. While analogous to a classical four nodal diameter mode, the S and C members of
P(0, 4) su!er contamination at harmonics k"1, 6, 9,2, with their distorted appearance
depicted in Figure 2(a). With respect to the wavenumber spectrum shown in Figure 2(b),
since k"93M, those coe$cients have the same sign and magnitude (!0)08) as given by
equation (7). However, since k"1 and 6 each lie in P, A(R)

k
"!B(R)

k
at $0)21 and $0)13,

respectively, for those wavenumbers in equation (8). Likewise, with n"6 in Figure 3 for the
P(0, 6) mode, A(R)

k
"B(R)

k
for k"13M, but A(R)

k
"!B(R)

k
for k"4 and 9.



Figure 3. (a) Transverse displacements;(R)
06S

and;(R)
06C

at r"1 of the P(0, 6) doublet, and (b) Fourier coe$cients
R
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, j, at k"1, 4 and 9.
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2.2. SPLIT DOUBLETS

When 2n"jNF ( j"1, 2,2), the degenerate frequencies for an axisymmetric structure's
doublet generally split. When "ve features are present, for instance, the frequencies of the 5,
10, 15,2 nodal diameter doublets are a!ected. Conversely, as those features are gradually
removed, two frequencies in the periodic structure's spectrum would coalesce. Through the
asymptotic analysis, the split doublet eigenvalues of the system in Figure 1 become in the
"rst approximation
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is the normalized "rst-order correction. In the present case, the otherwise split frequencies
repeat again whenever sin(na)"0, namely, a"jp/n ( j"1, 2,2). Figure 4 depicts this



Figure 4. First order eigenvalue corrections for the split sine (**) and cosine () ) )) doublet members as
functions of the span angle a; NF"5 and n"5. The nominally &&split'' frequencies repeat at a"n/5.
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dependence of j
c, s

on the span angle for the case NF"n"5. For parameter values as in
Figures 2 and 3, C has higher frequency than S for small a, but as the span is increased, the
loci cross at a"p/5. In fact, for larger a, the sine mode's natural frequency is greater than
that of the cosine mode. In this light, it is possible for a periodic structure's doublet, which
would be expected to split in frequency on the basis of the 2n"jNF criterion, to retain
repeated frequencies, at least to "rst order.

With NF"5, for instance, because a lies in (0, 2n/5), the frequency loci of the P (0, 5)SC
doublet in Figure 4 exhibit only one crossing at a"n/5. In the same structure, however, the
loci for P(0, 10)SC doublet have three crossings at a"n/10, n/5 and 3n/10. When NF is
odd, the loci of the lowest-frequency split doublet cross only at a"n/NF, but when NF is
even, no such crossing occurs since n"NF/2. For instance, P(0, 3)SC is the
lowest-frequency split doublet in a structure with six features, but because 0)a)n/3, no
frequency crossing point occurs as a is varied.

The eigenfunctions of the doublet become
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where the superscript indicates that the doublet is nominally split. While the sine mode is
unaltered to "rst order, namely B(S)

k
(r)"0, the contamination coe$cients for the cosine

member are

A(S)
k

(r)"A
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NFBC
mnk
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Notably, the A(S)
k

precisely vanish at the crossing points of the eigenvalue loci. At those
particular a, the natural frequencies of the &&split'' doublet repeat, and the mode shapes are
identical to "rst order with those of the axisymmetric disk. For the split doublets, the extent
of modulation grows with n, but is inversely proportional to NF.

3. TRAVELLING WAVE RESPONSE

The steady-state near-resonant response of repeated and split doublets when they are
subjected to a harmonic travelling wave excitation is discussed in this section. The vibration
modes are expressed in the forms (5) and (6) for a repeated doublet, and equations (12) and
(13) for a split doublet. In that sense, the structure under consideration can be more general
than the model system of Figure 1, to the extent that its doublets admit such
representations. Without having independent sine- and cosine-oriented components at
identical or nearly identical frequencies, singlets do not produce travelling wave responses,
and they are therefore not considered further.

As sketched in Figure 1, the forcing function has spatial wavenumber N, and is
concentrated at the radial position r*, and rotates relative to the disk. As observed in s(0),
the excitation is

f (r, h, t)"
F
0
r

d(r!r*)cos(Nh#ut), r*3 (r
i
, 1), (15)

with frequency u"NX, where the dimensionless F
0

is the physical forcing amplitude per
unit length as scaled by Eh3/12a2(1!v2). With the eigensolutions obtained from the
preceding perturbation analysis and normalized to "rst order with respect to M, the
response is determined through modal analysis.

3.1. REPEATED DOUBLETS

When u is near the common natural frequency u(R)
mn

of the P (m, n) doublet, and the
remaining natural frequencies are well-spaced from u, the response is approximated by
superposition of the doublet's two members according to

u(R)
mn

(r, h, t)+q(R)
mnc

(t);(R)
mnc

(r, h)#q(R)
mns

(t);(R)
mns

(r, h). (16)

The generalized coordinates q(R)
mnc

and q(R)
mnc

have non-zero values in only two circumstances:
when N"n (P(m, n) is driven through the base wavenumber), and when N"k3K(P(m, n)
is driven through contamination wavenumber). The latter situation is further classi"ed
according to whether N lies in the M or P subsets.

3.1.1. Case N"n

The generalized coordinates in equation (16) are given by

q(R)
mnc

"

nF
0
R

mn
(r*)

u2!u(R)2
mn

cos(ut), q(R)
mns

"!

nF
0
R

mn
(r*)

u2!u(R)2
mn

sin(ut). (17, 18)



78 J. Y. CHANG AND J. A. WICKERT
Following substitution of equations (5) and (6) and equations (17) and (18) into equation
(16), the steady state response becomes

u(R)
mn
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mn A
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The motion comprises three classes of harmonic waves:

f The base wave R
mn

(r)cos(nh#ut) derives from the doublet's asymptotic nodal diameter
structure. This response component has the same wavenumber as the excitation, and
propagates in the same (backward) direction and at the same phase speed relative to the
disk, as does f.

f The subset M of contamination waves, each of which also propagates backward in s(0),
but with di!erent wavenumbers and phase speeds than the excitation.

f The subset P of contamination waves, each of which propagates in the direction opposite
the excitation, and at di!erent phase speeds and with di!erent wavenumbers than f.

As an example, Figure 5 illustrates the response of the P (0, 4) doublet for the structure
shown in Figure 1 when N"4. The structure's response is animated over one period
¹"2n/NX of excitation at "ve equally spaced instants, and it is decomposed into its
Fourier components at wavenumbers n and K. With NF"5, M"M9, 14, 19,2N and
P"M1, 6, 11,2N for P(0, 4). The n"4 and k"9, 14,2 components travel backward with
f, whereas the k"1, 6,2 components propagate in the forward direction. The slopes of the
arrows in the elements of Figure 5 indicate the propagation speed of each response
component.

Vibration measurements of rotating structures are often made at a point "xed either in
the structure's or in the excitation's, reference frame. The spectral content of such
measurements is also of some practical importance. The response (19) as measured in s(0) at
particular values of h and r contains a spectral component only at frequency NX. The
vibration could alternatively be measured in s(1) through the substitution h"/!Xt. In
that case, then n"4 component appears stationary as it travels with the same phase speed
as f, but the M and P components produce content at frequencies (N$k)X. Since
DN$k D"jNF ( j"1, 2,2) by hypothesis, the spectrum measured in s(1) includes content
at frequencies NF]X, 2NF]X, and so forth.

3.1.2. Case N3M

For the case in which the excitation's wavenumber is commensurate with a k3M, the
response is

u(R)
mn

(r, h, t)"
enF

0
A(R)

N
(r*)

u2!u(R)2
mn A

R
mn

(r)cos(nh#ut)

#e +
k|M

A(R)
k

(r)cos(kh#ut)

#e +
k|P

A(R)
k

(r)cos(kh!ut)B . (20)

In this case, the amplitudes of the generalized forces for q(R)
mnc

and q(R)
mns

are determined by
eA(R)

N
, rather than by R

mn
in equation (19). The response is therefore qualitatively similar to

that in the case N"n, except that the amplitudes di!er, being scaled by eA(R)
N

(r*)/R
mn

(r*).
Aside from the factor, the structure's response, Fourier decomposition, and spectral content
under point measurements made in s(0) and s(1) are identical here, with say N"9, to that
shown in Figure 5.



Figure 5. (a) Steady state response in s(0) of the P(0, 4) doublet over one excitation period, and its Fourier
decomposition (b)}(e); N"4, NF"5, k

0
"m

0
"0)5, a"n/10, and r

0
"r*"1. Response components with the

base n"4 and contamination k"93M wavenumbers propagate backward with the excitation, while the
contamination k"1 and 63P waves propagate forward. The bold arrow in (a) denotes the direction and rate of
the excitation's propagation relative to the disk. Arrows in (b)}(e) indicate the direction and propagation rate for
the respective harmonics.
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3.1.3. Case N3P

When the excitation's wavenumber lies in P subset of K, the response is given by

u(R)
mn

(r, h, t)"
enF

0
A(R)

N
(r*)

u2!u(R)2
mn A

R
mn

(r)cos(nh!ut)

#e +
k |M

A(R)
k

(r)cos(kh!ut)

#e +
k |P

A(R)
k

(r)cos(kh#ut)B . (21)

Only those response components having wavenumbers in P travel backward with f;
conversely, those components at n and in M propagate forward. The responses of the
P(0, 4) and P (0, 6) doublets, and decompositions into their various wavenumber
components, are depicted in Figures 6 and 7.

3.2. SPLIT DOUBLETS

When they are driven by a travelling wave, the members of split doublets superpose in
a manner similar to that of the repeated frequency doublets, except that the dynamic
magni"cation factors for the S and C members di!er, since generally u(S)

mnc
Ou(S)

mns
. When

N"n and u is near the close but separate natural frequencies, the response in s(0) is



Figure 6. (a) Steady state response in s(0) of the P(0, 4) doublet over one excitation period, and its Fourier
decomposition (b)}(e); N"6, NF"5, k

0
"m

0
"0)5, a"n/10, and r

0
"r*"1. Response components with the

base n"4 and contamination k"93M wavenumbers propagate forward, while the contamination k"1 and
63P waves propagate backward with the excitation. The bold arrow in (a) denotes the direction and rate of the
excitation's propagation relative to the disk. Arrows in (b)}(e) indicate the direction and propagation rate for the
respective harmonics.
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approximately

u(S)
mn

(r, h, t)"nF
0
R

mn
(r*) A

R
mn

(r)cos(nh)cos(ut)/(u2!u(S)2
mnc

)

!R
mn

(r)sin(nh)sin(ut)/(u2!u(S)2
mns

)

#e+
k|K

A(S)
k

(r)cos(kh)cos(ut)/(u2!u(S)2
mnc

)B , (22)

where equations (12) and (13) have been used. In the limit of axisymmetry, the "rst two
terms of equation (22) combine to produce a backward travelling response wave since
u(S)

mnc
"u(S)

mns
. However, because those frequencies are nominally distinct for eO0,

superposition of the "rst two components generally produces a combination of travelling
and standing wave responses at wavenumber n. The precise balance between those two
components depends on u and its magnitude when compared with u(S)

mnc
and u(S)

mns
, as

calculated through substitutions in equation (22) of certain trigonometric identities.
The third term appearing in equation (22) is interpreted as the response contributions

associated with modulation in ;(S)
mnc

, which for each k, appear in s(0) as a series of standing
waves. When u+u(S)

mns
, the response is dominated by a sine-oriented standing wave at

wavenumber n. Likewise, when u+u(S)
mnc

, the response is set primarily by cosine-oriented
standing waves having wavenumbers n and each k3K. To the extent that R

mn
(r)'eA(S)

k
(r),

the magnitude of the travelling wave component at n will often be greater than that of each
standing wave component, at least for excitation frequencies near the intermediate value
u

0
"(u(S)

mnc
#u(S)

mns
)/2.



Figure 7. (a) Steady state response in s(0) of the P(0, 6) doublet over one excitation period, and its Fourier
decomposition (b)}(e); N"4, NF"5, k

0
"m

0
"0)5, a"n/10, and r

0
"r*"1. Response components with the

base n"6 and contamination k"13M wavenumbers propagate forward, while the contamination k"4 and
93P waves propagate backward with the excitation. The bold arrow in (a) denotes the direction and rate of the
excitation's propagation relative to the disk. Arrows in (b)}(e) indicate the direction and propagation rate for the
respective harmonics.
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When the nominally split natural frequencies coalesce at a"jn/n ( j"1, 2,2), each
A(S)

k
(r) vanishes, and B(S)

k
(r)"0 in any case. At that condition, the doublet responds to "rst

order in a manner analogous to that for a repeated doublet of an axisymmetric structure,
with resonance at the shifted frequency (10) and only when N"n.

For the model structure with parameter values as in Figures 5}7, Figure 8 depicts the
norm of the response spectrum of the P (0, 5)SC doublet when excited at N"5, where
Du(S)

mn
D2":2n@u

0
:2n
0

u(S)È
mn

(r*, h, t) dhdt. A travelling wave dominates the response when u is far
from u(S)

05c
and u(S)

05s
to the extent that R

mn
(r) is substantially greater than each eA(S)

k
(r),

standing waves dominate near either u(S)
05c

and u(S)
05s

, and a blend, generally dominated by
the travelling wave, exists near u

0
. Qualitative demarcation points between the various

regimes are also indicated in the "gure.
Finally, when N is instead commensurate with one of the contamination wavenumbers,

the response becomes

u(S)
mn

(r, h, t)"
enF

0
A(S)

N
(r*)

u2!u(S)2
mnc
ARmn

(r)cos(nh)#e +
k|K

A(S)
k

(r)cos(kh)Bcos(ut). (23)

In this case, the structure responds in s(0) with a linear combination of cosine-oriented
standing waves having common frequency but di!erent wavenumbers.



Figure 8. Response amplitude of the P(0, 5)SC doublet, the "rst order; N"5 ad r
0
"r*"1. The labels denote

regions where the response is dominated by travelling or standing wave components.
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4. SUMMARY

The frequency and mode structure of a model rotationally periodic structure, and its
forced response when subjected to harmonic travelling wave excitation, are discussed by
using a hybrid perturbation and modal analysis approach. Particular emphasis on the
behaviour of the repeated and split frequency doublets, which shift in frequency and in
wavenumber composition as periodic features are incorporated into an otherwise
axisymmetric structural model.

The contamination wavenumbers k3K appearing in a repeated doublet are determined
through the criterion Dn$k D"NF, 2NF,2, and those wavenumbers are preferentially
further classi"ed into subsets M and P. The Fourier sine and cosine coe$cients which
de"ne the doublet's modulated shapes are shown to have the same sign when k3M,
but opposite signs when k3P. That distinction establishes an underlying structure
for the doublets which in#uences both the quantitative and qualitative character of
the response under travelling wave excitation. The individual Fourier components
comprising a modulated doublet can propagate in the same direction as the excitation or
opposite to it, and at the same or di!erent phase speed, depending on the wavenumber of
excitation and the subset to which the contamination wavenumber being considered
belongs.
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